156 research outputs found

    Videogame-based group therapy to improve self-awareness and social skills after traumatic brain injury

    Get PDF
    [EN] Background: This study determines the feasibility of different approaches to integrative videogame-based group therapy for improving self-awareness, social skills, and behaviors among traumatic brain injury (TBI) victims and retrieves participant feedback. Methods: Forty-two adult TBI survivors were included in a longitudinal study with a pre- and post-assessments. The experimental intervention involved weekly one-hour sessions conducted over six months. Participants were assessed using the Self-Awareness Deficits Interview (SADI), Patient Competency Rating Scale (PCRS), the Social Skills Scale (SSS), the Frontal Systems Behavior Scale (FrSBe), the System Usability Scale (SUS). Pearson's chi-squared test (χ 2 ) was applied to determine the percentage of participants who had changed their clinical classification in these tests. Feedback of the intervention was collected through the Intrinsic Motivation Inventory (IMI). Results: SADI results showed an improvement in participant perceptions of deficits (χ 2 = 5.25, p < 0.05), of their implications (χ 2 = 4.71, p < 0.05), and of long-term planning (χ 2 = 7.86, p < 0.01). PCRS results confirm these findings (χ 2 = 5.79, p < 0.05). SSS results were also positive with respect to social skills outcomes (χ 2 = 17.52, p < 0.01), and FrSBe results showed behavioral improvements (χ 2 = 34.12, p < 0.01). Participants deemed the system accessible (80.43 ± 8.01 out of 100) and regarded the intervention as interesting and useful (5.74 ± 0.69 out of 7). Conclusions: Integrative videogame-based group therapy can improve self-awareness, social skills, and behaviors among individuals with chronic TBI, and the approach is considered effective and motivating.This study was funded in part by Ministerio de Economia y Competitividad of Spain (Project TEREHA, IDI-20110844; and NeuroVR, TIN2013-44741-R), by Ministerio de Educacion y Ciencia of Spain (Projects Consolider-C, SEJ2006-14301/PSIC; and "CIBER of Physiopathology of Obesity and Nutrition, an initiative of ISCIII"), and by the Excellence Research Program PROMETEO (Generalitat Valenciana. Conselleria de Educacion, 2008-157).Llorens Rodríguez, R.; Noé Sebastián, E.; Ferri, J.; Alcañiz Raya, ML. (2015). Videogame-based group therapy to improve self-awareness and social skills after traumatic brain injury. Journal of NeuroEngineering and Rehabilitation. 12(37):1-9. https://doi.org/10.1186/s12984-015-0029-1S191237Sherer M, Bergloff P, Levin E, High Jr WM, Oden KE, Nick TG. Impaired awareness and employment outcome after traumatic brain injury. J Head Trauma Rehabil. 1998;13(5):52–61.Sherer M, Hart T, Nick TG. Measurement of impaired self-awareness after traumatic brain injury: a comparison of the patient competency rating scale and the awareness questionnaire. Brain Inj. 2003;17(1):25–37.Simmond M, Fleming J. Occupational therapy assessment of self-awareness following traumatic brain injury: a literature review. Br J Occup Ther. 2003;66:447–53.Bogod NM, Mateer CA, MacDonald SWS. Self-awareness after traumatic brain injury: a comparison of measures and their relationship to executive functions. J Int Neuropsychol Soc. 2003;9(03):450–8.Stuss DT, Levine B. Adult clinical neuropsychology: lessons from studies of the frontal lobes. Annu Rev Psychol. 2002;53:401–33.Ham TE, Bonnelle V, Hellyer P, Jilka S, Robertson IH, Leech R, et al. The neural basis of impaired self-awareness after traumatic brain injury. Brain. 2014;137(Pt 2):586–97.Prigatano GP, Schacter DL. Awareness of Deficit After Brain Injury: Clinical and Theoretical Issues. New York: Oxford University Press; 1991.Katz N, Fleming J, Keren N, Lightbody S, Hartman-Maeir A. Unawareness and/or denial of disability: implications for occupational therapy intervention. Can J Occup Ther. 2002;69(5):281–92.Fleming JM, Strong J, Ashton R. Self-awareness of deficits in adults with traumatic brain injury: how best to measure? Brain Inj. 1996;10(1):1–15.Goverover Y, Johnston MV, Toglia J, Deluca J. Treatment to improve self-awareness in persons with acquired brain injury. Brain Inj. 2007;21(9):913–23.Bach LJ, David AS. Self-awareness after acquired and traumatic brain injury. Neuropsychol Rehabil. 2006;16(4):397–414.Prigatano GP. Behavioral Limitations TBI patients tend to underestimate: a replication and extension to patients with lateralized cerebral dysfunction. Clin Neuropsychol. 1996;10(2):191–201.Sherer M, Boake C, Levin E, Silver BV, Ringholz G, High WM. Characteristics of impaired awareness after traumatic brain injury. J Int Neuropsychol Soc. 1998;4(04):380–7.Sveen U, Mongs M, Roe C, Sandvik L, Bautz-Holter E. Self-rated competency in activities predicts functioning and participation one year after traumatic brain injury. Clin Rehabil. 2008;22(1):45–55.Crosson B, Barco PP, Velozo CA, Bolesta MM, Cooper PV, Werts D, et al. Awareness and compensation in postacute head injury rehabilitation. J Head Trauma Rehabil. 1989;4(3):46–54.Toglia J, Kirk U. Understanding awareness deficits following brain injury. NeuroRehabilitation. 2000;15(1):57–70.Schrijnemaekers AC, Smeets SM, Ponds RW, van Heugten CM, Rasquin S. Treatment of unawareness of deficits in patients with acquired brain injury: a systematic review. J Head Trauma Rehabil. 2014;29(5):E9–30.Tate R, Kennedy M, Ponsford J, Douglas J, Velikonja D, Bayley M, et al. INCOG recommendations for management of cognition following traumatic brain injury, part III: executive function and self-awareness. J Head Trauma Rehabil. 2014;29(4):338–52.Chittum WR, Johnson K, Chittum JM, Guercio JM, McMorrow MJ. Road to awareness: an individualized training package for increasing knowledge and comprehension of personal deficits in persons with acquired brain injury. Brain Inj. 1996;10(10):763–76.Zhou J, Chittum R, Johnson K, Poppen R, Guercio J, McMorrow MJ. The utilization of a game format to increase knowledge of residuals among people with acquired brain injury. J Head Trauma Rehabil. 1996;11(1):51–61.Ownsworth TL, McFarland K, Mc Young R. Self-awareness and psychosocial functioning following acquired brain injury: an evaluation of a group support programme. Neuropsychol Rehabil. 2000;10(5):465–84.Lundqvist A, Linnros H, Orlenius H, Samuelsson K. Improved self-awareness and coping strategies for patients with acquired brain injury–a group therapy programme. Brain Inj. 2010;24(6):823–32.Schmidt J, Lannin N, Fleming J, Ownsworth T. Feedback interventions for impaired self-awareness following brain injury: a systematic review. J Rehabil Med. 2011;43(8):673–80.Schmidt J, Fleming J, Ownsworth T, Lannin NA. Video feedback on functional task performance improves self-awareness after traumatic brain injury: a randomized controlled trial. Neurorehabil Neural Repair. 2013;27(4):316–24.McGraw-Hunter M, Faw GD, Davis PK. The use of video self-modelling and feedback to teach cooking skills to individuals with traumatic brain injury: a pilot study. Brain Inj. 2006;20(10):1061–8.Ownsworth T, Quinn H, Fleming J, Kendall M, Shum D. Error self-regulation following traumatic brain injury: a single case study evaluation of metacognitive skills training and behavioural practice interventions. Neuropsychol Rehabil. 2010;20(1):59–80.Lucas SE, Fleming JM. Interventions for improving self-awareness following acquired brain injury. Aust Occup Ther J. 2005;52(2):160–70.Malec JF, Brown AW, Leibson CL, Flaada JT, Mandrekar JN, Diehl NN, et al. The mayo classification system for traumatic brain injury severity. J Neurotrauma. 2007;24(9):1417–24.Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.Nakase-Thompson R, Manning E, Sherer M, Yablon SA, Gontkovsky SL, Vickery C. Brief assessment of severe language impairments: initial validation of the Mississippi aphasia screening test. Brain Inj. 2005;19(9):685–91.Prigatano GP, Fordyce DJ. Neuropsychological rehabilitation after brain injury. Baltimore: The Johns Hopkins University Press; 1986.Gismero E. EHS, Escala de habilidades sociales. TEA: Madrid; 2000.Reid-Arndt SA, Nehl C, Hinkebein J. The Frontal Systems Behaviour Scale (FrSBe) as a predictor of community integration following a traumatic brain injury. Brain Inj. 2007;21(13–14):1361–9.Brooke J. SUS: A quick and dirty usability scale. In Usability evaluation in industry. PW Jordan, et al. Editors. Taylor and Francis; 1996Plant RW, Ryan RM. Intrinsic motivation and the effects of self-consciousness, self-awareness, and ego-involvement: An investigation of internally controlling styles. J Pers. 1985;53(3):435–49.Cheng SK, Man DW. Management of impaired self-awareness in persons with traumatic brain injury. Brain Inj. 2006;20(6):621–8.Ownsworth T, Fleming J, Shum D, Kuipers P, Strong J. Comparison of individual, group and combined intervention formats in a randomized controlled trial for facilitating goal attainment and improving psychosocial function following acquired brain injury. J Rehabil Med. 2008;40(2):81–8.Ownsworth T, Fleming J, Desbois J, Strong J, Kuipers P. A metacognitive contextual intervention to enhance error awareness and functional outcome following traumatic brain injury: a single-case experimental design. J Int Neuropsychol Soc. 2006;12(1):54–63.Fleming JM, Lucas SE, Lightbody S. Using occupation to facilitate self-awareness in people who have acquired brain injury: a pilot study. Can J Occup Ther. 2006;73(1):44–55.McDonald S, Tate R, Togher L, Bornhofen C, Long E, Gertler P, et al. Social skills treatment for people with severe, chronic acquired brain injuries: a multicenter trial. Arch Phys Med Rehabil. 2008;89(9):1648–59.Schefft BK, Malec JF, Lehr BK, Kanfer FH. The role of self-regulation therapy with the brain-injured client. In: Maurish ME, Moses JA, editors. Clinical neuropsychology: theoretical foundations for practitioners. Mahwah, NJ: Erlbaum; 1997. p. 237–82.Pollens RD, McBratnie BP, Burton PL. Beyond cognition: executive functions in closed head injury. Cogn Rehabil. 1988;6(5):26–32.Carbery H, Burd B. Social aspects of cognitive retraining in an outpatient group setting for head trauma patients. Cogn Rehabil. 1983;1:5–7.Bennett TL, Raymond MJ. Emotional consequences and psychotherapy for individuals with mild brain injury. Appl Neuropsychol. 1997;4(1):55–61.Delmonico RL, Hanley-Peterson P, Englander J. Group psychotherapy for persons with traumatic brain injury: management of frustration and substance abuse. J Head Trauma Rehabil. 1998;13(6):10–22.Alexy WD, Foster M, Baker A. Audio-visual feedback: an exercise in self-awareness for the head injured patient. Cogn Rehabil. 1983;1(6):8–10.Ranseen JD, Bohaska LA, Schmitt FA. An investigation of anosognosia following traumatic head injury. Int J Clin Neuropsychol. 1990;12(1):29–36.Sasse N, Gibbons H, Wilson L, Martinez-Olivera R, Schmidt H, Hasselhorn M, et al. Self-awareness and health-related quality of life after traumatic brain injury. J Head Trauma Rehabil. 2013;28(6):464–72.Malec JF, Testa JA, Rush BK, Brown AW, Moessner AM. Self-assessment of impairment, impaired self-awareness, and depression after traumatic brain injury. J Head Trauma Rehabil. 2007;22(3):156–66.Fleming JM, Ownsworth T. A review of awareness interventions in brain injury rehabilitation. Neuropsychol Rehabil. 2006;16(4):474–500

    Bioethical implications of end-of-life decision-making in patients with dementia:a tale of two societies

    Get PDF
    End-of-life decision-making in patients with dementia is a complex topic. Belgium and the Netherlands have been at the forefront of legislative advancement and progressive societal changes concerning the perspectives toward physician-assisted death (PAD). Careful consideration of clinical and social aspects is essential during the end-of-life decision-making process in patients with dementia. Geriatric assent provides the physician, the patient and his family the opportunity to end life with dignity. Unbearable suffering, decisional competence, and awareness of memory deficits are among the clinical considerations that physicians should incorporate during the end-of-life decision-making process. However, as other societies introduce legislature granting the right of PAD, new social determinants should be considered; Mexico City is an example. Current perspectives regarding advance euthanasia directives (AED) and PAD in patients with dementia are evolving. A new perspective that hinges on the role of the family and geriatric assent should help culturally heterogeneous societies in the transition of their public health care policies regarding end-of-life choices.</p

    Replication of CNTNAP2 association with nonword repetition and support for FOXP2 association with timed reading and motor activities in a dyslexia family sample

    Get PDF
    Two functionally related genes, FOXP2 and CNTNAP2, influence language abilities in families with rare syndromic and common nonsyndromic forms of impaired language, respectively. We investigated whether these genes are associated with component phenotypes of dyslexia and measures of sequential motor ability. Quantitative transmission disequilibrium testing (QTDT) and linear association modeling were used to evaluate associations with measures of phonological memory (nonword repetition, NWR), expressive language (sentence repetition), reading (real word reading efficiency, RWRE; word attack, WATT), and timed sequential motor activities (rapid alternating place of articulation, RAPA; finger succession in the dominant hand, FS-D) in 188 family trios with a child with dyslexia. Consistent with a prior study of language impairment, QTDT in dyslexia showed evidence of CNTNAP2 single nucleotide polymorphism (SNP) association with NWR. For FOXP2, we provide the first evidence for SNP association with component phenotypes of dyslexia, specifically NWR and RWRE but not WATT. In addition, FOXP2 SNP associations with both RAPA and FS-D were observed. Our results confirm the role of CNTNAP2 in NWR in a dyslexia sample and motivate new questions about the effects of FOXP2 in neurodevelopmental disorders
    corecore